Osaki CoolGen Project

September 7, 2011
Osaki CoolGen Corporation
Overview of Osaki CoolGen Corporation

<table>
<thead>
<tr>
<th>Corporate Name</th>
<th>Osaki CoolGen Corporation (OCG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Incorporation</td>
<td>July 29, 2009</td>
</tr>
</tbody>
</table>
| Owner | Chugoku Electric Power Co., Inc. (EnerGia) [50%]
Electric Power Development Co., Ltd (J-POWER) [50%] |
| Business Address | 3FL, Delta Bldg, 1-3-29 Kokutaijimachi, Naka-ku, Hiroshima, JAPAN |
| Business Summary | Conducting the large scale demonstration tests on Oxygen-blown IGCC and CO₂ capture technology toward the realization of IGFC which is ultimate high efficiency coal fired power plant |
Project Background
(Positioning of coal)

- Diversification of energy fuel
- Coal is an indispensable source of energy to satisfy global energy demand
- Concerns about greenhouse gas emissions should be resolved with more efficient technologies

IGCC + CO$_2$ Capture
IGFC
Significance of Osaki CoolGen project

- **Realization of zero emission coal fired power plant**
 Osaki project is a large scale demonstration test that is based on oxygen blown coal gasification technology (EAGLE gasifier) as a development step toward IGFC.

1. **Pursuit of the World’s highest efficiency as coal power plant**
 - High gasification efficiency
 - low N_2 fuel gas \Rightarrow fuel for FC

2. **Clean technology of coal fired power plant**
 - CO_2 Capture system test \Rightarrow IGCC, IGFC+ CO_2 Capture

3. **Gasification technology suitable for Japan**
 - Coal in diversity
Roadmap of High-efficiency coal fired power technology

《Source》based on “Cool Earth Energy Innovative Technology Plan” of METI

* Net Efficiency, HHVbase
Significance of Osaki CoolGen project

- Multi-purpose use
 Gasification plant can be used for multi-purpose other than power generation
 \[\Rightarrow \text{CO and H}_2 \text{ are dense in syngas} \]

Example of multi-purpose use

- Japan
 - Poly-generation in industrial complex

- Overseas
 - Making high-value product or/and raw material from low rank coal at coal mine
Development Step for an Oxygen-blowed IGCC

EAGLE Project (J-POWER) <Pilot plant>

- Test Item: Pilot test of Oxygen blown Gasification and Carbon Capture Technology
- IGCC: Coal Feed Rate: 150 tons/day
- CO_2 Capture
 - Processed Gas Volume: 1,000 m3/N/h
 - CO_2 capture method: Chemical absorption test & Physical absorption test

Osaki CoolGen Project <Demonstration plant>

- Test Item: Large scale IGCC test of Oxygen blown Gasification and Carbon Capture Technology
- IGCC: Coal Feed Rate: 1,100 tons/day, Output: 170MW class
- CO_2 Capture: under planning

Oxygen blown IGCC commercial plant <Commercial plant>

- 300-600MW class
Features of the Gasifier

- High-efficiency gasification
- Stable slag discharge

Upper stage: Lean Oxygen
Coal \rightarrow Char
Char $+$ CO$_2$ $+$ H$_2$O \rightarrow CO $+$ H$_2$

Lower stage: Rich Oxygen
Coal $+$ O$_2$ \rightarrow CO$_2$ $+$ H$_2$O

High-temperature gasification
Stable slag discharge
Schedule

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Impact Assessment</td>
<td></td>
</tr>
<tr>
<td>Optimization Research & Study</td>
<td></td>
</tr>
<tr>
<td>IGCC</td>
<td></td>
</tr>
<tr>
<td>CO₂ Capture</td>
<td></td>
</tr>
<tr>
<td>IGFC</td>
<td></td>
</tr>
</tbody>
</table>

NEDO joint research projects

- Design, Manufacturing and Construction
- Test Operation

The Start of Construction
Specifications of Osaki CoolGen demonstration Plant

<table>
<thead>
<tr>
<th>IGCC Systems</th>
<th>Coal Gasifier</th>
<th>Oxygen-Blown Two-staged Entrained-flow 1,100 tons per day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean up System</td>
<td>DeSOx Unit</td>
<td>Methyldiethanol Amine (MDEA)</td>
</tr>
<tr>
<td></td>
<td>Sulfur Recovery Unit</td>
<td>Limestone Wet Scrubbing</td>
</tr>
<tr>
<td>Air Separation Unit</td>
<td></td>
<td>Pressurized Cryogenic Separation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oxygen ; 30,000 m³N/ h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nitrogen ; 50,000 m³N/ h</td>
</tr>
<tr>
<td>Combined Cycle</td>
<td>HRSG Unit</td>
<td>Multi Pressures Reheat Natural Circulation boiler</td>
</tr>
<tr>
<td></td>
<td>GT Unit & ST Unity</td>
<td>Single shaft gas turbine (1300℃ Class) Reheat & condensing Steam turbine 170MW class</td>
</tr>
<tr>
<td>Carbon Capture Unit</td>
<td></td>
<td>under consideration</td>
</tr>
</tbody>
</table>
Features of the demonstration

IGCC Target efficiency 40.5% (NET, HHV base)

Test operation of 170MW class IGCC

Test of GT (H₂ rich gas through CO₂ capture system)

IGCC

Air Separation Unit

Coal

Air

O₂

Fuel gas (H₂, CO)

Steam

GT

Compressor

Generator

ST

Stack

CO₂ Capture

Shift Reactor

CO₂ Capture

Test of CO₂ Capture System

Test of Fuel gas component

Test of gas purification technology
Site Location of Osaki CoolGen Project

EnerGia OSAKI P/S

IGCC Block

CO₂ Capture Block
Image of the Demonstration Plant

- CO₂ Capture Unit
- Air Separation Unit
- Coal Gasifier
- Combined Cycle Unit
- EnerGia OSAKI P/ S
THANK YOU