SEPTEMBER 2023

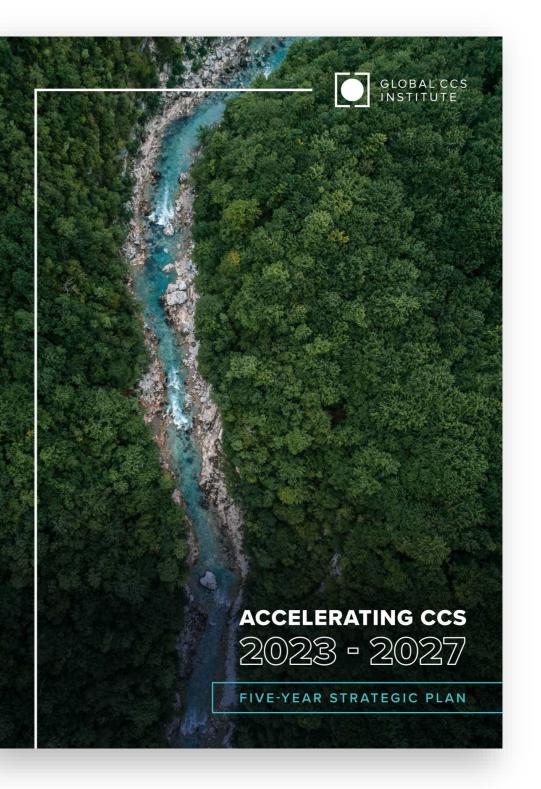
A GLOBAL PERSPECTIVE ON CCS

CLEAN COAL DAY

JARAD DANIELS CEO, GLOBAL CCS INSTITUTE

THE GLOBAL CCS INSTITUTE

Accelerating the deployment of CCS for a net-zero emissions future.


WHO WE ARE

International CCS think tank with offices around the world.

Over 200 members across governments, global corporations, private companies, research bodies and NGOs, all committed to a net-zero future.

WHAT WE DO

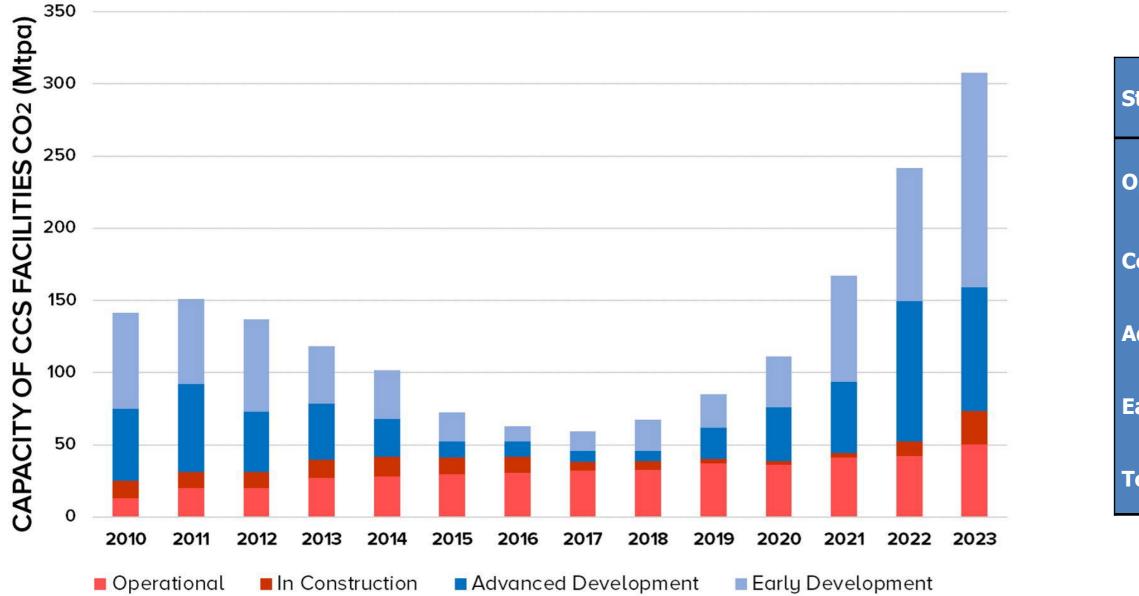
Fact-based influential advocacy, catalytic thought leadership, authoritative knowledge sharing.

CCS AND REACHING NET-ZERO

Achieving deep decarbonisation in hard-to-abate industry.

Enabling the production of low-carbon hydrogen at scale.

Providing low carbon dispatchable power.



Delivering negative emissions.

CCS FACILITY PIPELINE GROWING

* By capture capacity

Status	GSR 2022	CO2RE 2023
Operation	30	37
Construction	11	20
Adv Dev	78	97
Early Dev	75	103
Total	194	257

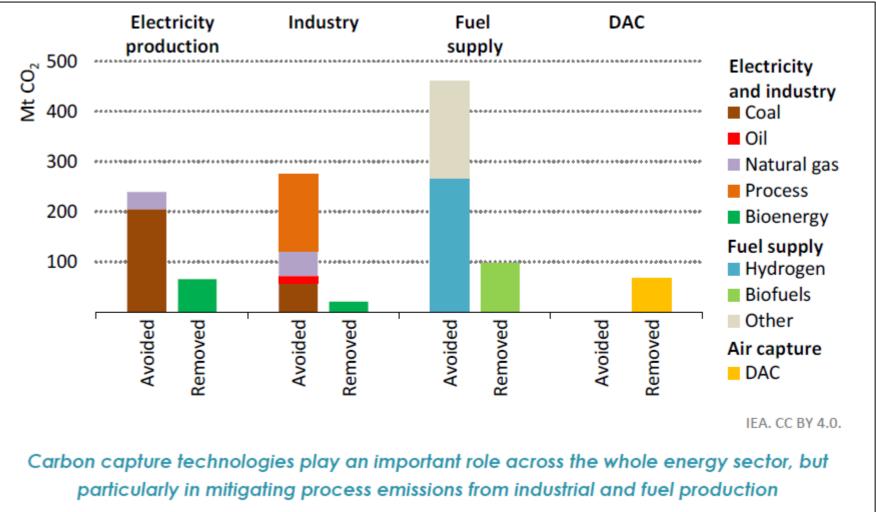
COUNTRIES SHOWING INCREASING AMBITION

- The EU needs to have 300 to 550 mtpa of installed CCUS capacity by 2050 to meet its NZE target. Net-Zero Industry Act aims to have 50 mtpa storage developed by 2030.
- The UK's CCUS roadmap foresees 20 to 30 mtpa of installed capacity by 2030.
- The US, through the Inflation Reduction Act (IRA), has given immense stimulus to the deployment of CCUS and Direct Air Capture (DAC) and could increase the deployment of CCS by <u>13-fold</u>* compared to existing policy to between 200 and 250 mtpa of capacity by 2030.
- Japan announced its CCS Long-Term Roadmap in January 2023, setting a target for Japan's first commercial CCS projects to commence by 2030 and aiming to store up to 240 Mtpa of CO₂ by 2050.
- The KSA has announced the target of capturing and storing 44 mtpa by 2035.
- In Brazil, Petrobras injected more than 10 mt of CO₂ in 2022, a world record for a company, and aims to inject 40 mtpa between 2023 and 2025.

* According to analysis carried out by REPEAT project

GLOBAL ACTION GOING INTO COP28

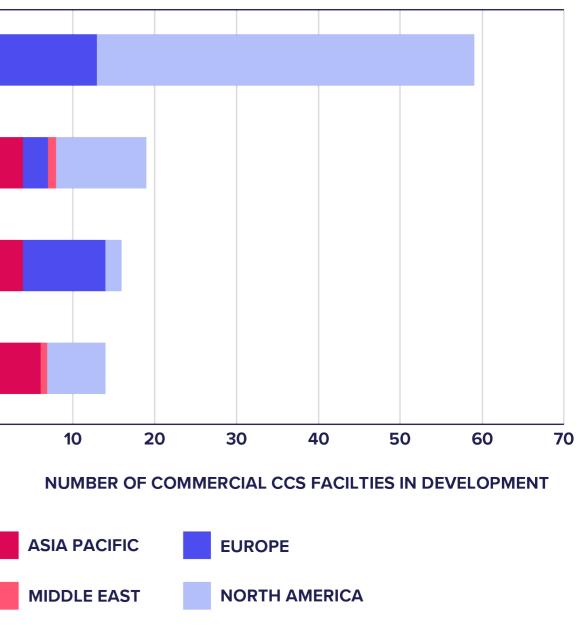
- Global Carbon Management Challenge
 - Australia, Canada, Egypt, EU, Japan, Saudi Arabia, United Arab Emirates, United States, United Kingdom, Norway, Denmark, Brazil and Sweden
- Global Decarbonisation Alliance
 - Private sector initiative under the COP28 Presidency
- IEA's Credible pathways to 1.5°C Four pillars for action in the 2020s
- CEM-14 in July 2023
 - Side events on Cement and CCS, Financing CCS and Carbon Management Challenge



SCALING UP THROUGH 2030

- According to IEA NZE, 1.2 GtCO₂ per annum should be captured by 2030, including for removals.
- Capturing 1.2 GtCO₂ by 2030 as modelled, requires 25-fold increase over current operational capacity and 4 times increase over the current pipeline.
- CCUS is required across diverse sectors and is increasingly important to industry.
- Stronger policy to incentivise rapid CCS investment is needed.

Total CO₂ capture by sector and type in the NZE, 2030


CASE STUDY: US POLICY AND PROJECT PROGRESS

- Bipartisan Infrastructure Law included over \$12 billion in investments in next-generation carbon capture, direct air capture, integrated CCUS demonstrations, and industrial emissions reduction demonstration projects, as well as CO₂ transport and storage infrastructure.
- Inflation Reduction Act provides tax credits of \$85 per tonne of CO₂ captured and stored and \$180 for every tonne of CO₂ removed through direct air capture and permanently stored.
- A study from Princeton shows that the total volume of CO₂ captured for transport and geologic storage across energy & industry could reach 200 million tons per year by 2030, a 13-fold increase compared to previous policy.
- Currently there are 14 commercial facilities in operation in the US, and close to 90 facilities under development.

EVOLUTION OF STORAGE

- 13 of the 37 facilities currently operating use dedicated geological storage with the remainder using EOR.
- 70% of the commercial CCS projects in development aim to use dedicated geological
 DEPLETED OIL AND GAS FIELD storage (deep saline formations, depleted oil and gas fields).
- Operational facilities, on average, can inject around 1 mtpa CO₂. That average could more than double within a decade. Many storage sites associated with the development of CCS networks generally have rates of around 5 Mtpa.

DEEP SALINE FORMATION

UNDER EVALUATION

* Analysis of 108 facilities in development with dedicated storage sites

CARBON DIOXIDE REMOVAL

- CDR continues to gain momentum and is viewed ulletas critical to net-zero.
- Engineered-CDR costs, specifically of DACCS, are ulletcurrently relatively high but projected to fall over time.
- The extent to which costs fall will determine ulletdeployment.
- CDR can play an important role in drawing down ullethistorical emissions even after we reach net-zero and provides a safety net.

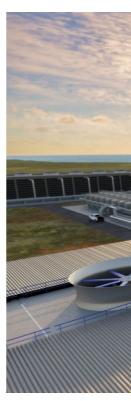


Image: Carbon Engineering

FINANCE AND INVESTMENT

- Private finance with government incentivization is key to deploying at scale. ullet
- Capital investment of \$655 billion \$1.28 trillions required over the next 30 years. lacksquare
- Taxonomies emerging in various jurisdictions efforts to adopt common principles key to a consistent approach.
- Carbon Markets Compliance and Voluntary- becoming increasingly important. ۲ Convergence expected, but time frame uncertain.
- ESG-related reporting remains important to commercial activity: ullet
 - Demand for detailed disclosure remains critical for investors.
 - Companies with significant emissions under pressure to report.
 - Although CCS not excluded, a clearer reporting pathway would be beneficial •

CCS DEVELOPMENTS AROUND THE WORLD EUROPE

- CCUS in Net-Zero Industry Act; EC developing CCUS strategy
- The EU through, the Innovation Fund, to invest in 22 CCS and CCU projects (and counting)
- Netherlands, Denmark, the UK are progressing their CCS policies and projects.

NORTH AMERICA \bullet

- The US leads globally with project and policy development.
- In Canada, CCUS Strategy under development and CCUS investment tax credit in federal budget.

MENA

lacksquare

- 3 facilities in operation in the region, equivalent to $\sim 10\%$ of global capture capacity.
- Ambition and momentum going into COP28.

• APAC

- JOGMEC selected 7 candidate projects for feasibility studies in Japan and overseas China's first 1 Mtpa CCUS facility started operations in 2022, with several other projects now in construction or in development.
- Project progress in Malaysia, Indonesia, and Australia

LESSONS LEARNED

- Despite significant progress since 2017, more is required, urgently.
- CCS capacity needs to scale from 50 million tons today to multiple gigatons by mid-century.
- Capital investment of \$655 billion \$1.28 trillion is required over the next 30 years.
- Governments to establish appropriate policies; Industry to build, own, and operate CCS facilities at scale and the Finance Sector to include CCS in their portfolios, ESG and green taxonomies.
- Stronger policy coupled with strong action by 2030 is crucial.

WHAT IS NEEDED GLOBALLY?

- Define the role of CCS and CDR in meeting national climate strategies and plans, set and communicate targets.
- Create a long-term, high value on the storage of CO₂
- Support the identification and appraisal of geological storage resources.
- Develop specific CCS laws and regulations.
- Identify opportunities for CCS networks and facilitate the establishment of transport and storage infrastructure.
- Enable investment in CCS through appropriate policy and market mechanisms.

THANK YOU

11

